The first places to reach grid parity were those with high traditional electricity prices and high levels of solar radiation. Currently, more capacity is being installed in the rooftop than in the utility-scale segment. However, the worldwide distribution of solar parks is expected to change as different regions achieve grid parity.This transition also includes a shift from rooftop towards utility-scale plants, since the focus of new PV deployment has changed from Europe towards the Sunbelt markets where ground-mounted PV systems are favored.

Because of the economic background, large-scale systems are presently distributed where the support regimes have been the most consistent, or the most advantageous. Total capacity of worldwide PV plants above 4 MWAC was assessed by Wiki-Solar as 36 GW in c. 2,300 installations at the end of 2014 and represents about 25 percent of total global PV capacity of 139 GW. The countries which had the most capacity, in descending order, were the United States, China, Germany, India, United Kingdom, Spain, Italy, Canada and South Africa.  Activities in the key markets are reviewed individually below.


China was reported in early 2013 to have overtaken Germany as the nation with the most utility-scale solar capacity. Much of this has been supported by the Clean Development Mechanism. The distribution of power plants around the country is quite broad, with the highest concentration in the Gobi desert and connected to the Northwest China Power Grid.


The first multi-megawatt plant in Europe was the 4.2 MW community-owned project at Hemau, commissioned in 2003. But it was the revisions to the German feed-in tariffs in 2004, which gave the strongest impetus to the establishment of utility-scale solar power plants. The first to be completed under this programme was the Leipziger Land solar park developed by Geosol. Several dozen plants were built between 2004 and 2011, several of which were at the time the largest in the world. The EEG, the law which establishes Germany’s feed-in tariffs, provides the legislative basis not just for the compensation levels, but other regulatory factors, such as priority access to the grid. The law was amended in 2010 to restrict the use of agricultural land, since which time most solar parks have been built on so-called ‘development land’, such as former military sites. Partly for this reason, the geographic distribution of photovoltaic power plants in Germany is biased towards the former Eastern Germany. As of February 2012, Germany had 1.1 million photovoltaic power plants (most are small kW roof mounted).


India has been rising up the leading nations for the installation of utility-scale solar capacity. The Charanka Solar Park in Gujarat was opened officially in April 2012 and was at the time the largest group of solar power plants in the world. Geographically the majority of the stations are located in Gujarat and Maharashtra. Rajasthan has successfully been attempting to attract solar development. Rajasthan and Gujarat share the Thar Desert, along with Pakistan.


Italy has a very large number of photovoltaic power plants, the largest of which is the 84 MW Montalto di Castro project.[170]


By the end of 2017, it was reported that more than 732 MW of solar energy projects had been completed, which contributed to 7% of Jordan’s electricity. After having initially set the percentage of renewable energy Jordan aimed to generate by 2020 at 10%, the government announced in 2018 that it sought to beat that figure and aim for 20%. A report by pv magazine described Jordan as the “Middle East’s solar powerhouse”.


The majority of the deployment of solar power stations in Spain to date occurred during the boom market of 2007-8. The stations are well distributed around the country, with some concentration in Extremadura, Castile-La Mancha and Murcia.

United Kingdom

The introduction of Feed-in tariffs in the United Kingdom in 2010 stimulated the first wave of utility-scale projects, with c. 20 plants being completed before tariffs were reduced on 1 August 2011 following the ‘Fast Track Review’. A second wave of installations was undertaken under the UK’s Renewables Obligation, with the total number of plants connected by the end of March 2013 reaching 86. This is reported to have made the UK Europe’s best market in the first quarter of 2013.

UK projects were originally concentrated in the South West, but have more recently spread across the South of England and into East Anglia and the Midlands. The first solar park in Wales came on stream in 2011 at Rhosygilwen, north Pembrokeshire. As of June 2014 there were 18 schemes generating more than 5 MW and 34 in planning or construction in Wales.

United States

The US deployment of photovoltaic power stations is largely concentrated in southwestern states. The Renewable Portfolio Standards in California and surrounding states provide a particular incentive. The volume of projects under construction in early 2013 has led to the forecast that the US will become the leading market.